您的位置: 旅游网 > 社会

新手入门 Linux操作系统内核技术详细解读 (2)

发布时间:2019-12-04 12:39:00

以下即为分析实例: (一)操作平台: 硬件:cpu intel Pentium II ; 软件:Redhat Linux 6.0; 内核版本2.2.5 (二)相关内核源代码分析: 1.系统的引导和初始化:Linux 系统的引导有好几种方式:常见的有 Lilo, Loadin引导和Linux的自举引导 (bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析;无论是哪种引导方式,最后都要跳转到 arch/i386/Kernel/setup.S, setup.S主要是进行时模式下的初始化,为系统进入保护模式做准备;此后,系统执行 arch/i386/kernel/head.S (对经压缩后存放的内核要先执行 arch/i386/boot/compressed/head.S); head.S 中定义的一段汇编程序setup_idt ,它负责建立一张256项的 idt 表(Interrupt Descriptor Table),此表保存着所有自陷和中断的入口地址;其中包括系统调用总控程序 system_call 的入口地址;当然,除此之外,head.S还要做一些其他的初始化工作; 2.系统初始化后运行的第一个内核程序asmlinkage void __init start_kernel(void) 定义在 /usr/src/linux/init/main.c中,它通过调用usr/src/linux/arch/i386/kernel/traps.c 中的一个函数 void __init trap_init(void) 把各自陷和中断服务程序的入口地址设置到 idt 表中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init trap_init(void) 函数则通过调用一个宏 set_system_gate(SYSCALL_VECTOR,&system_call); 把系统调用总控程序的入口挂在中断0x80上; 其中SYSCALL_VECTOR是定义在 /usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80; 而 system_call 即为中断总控程序的入口地址;中断总控程序用汇编语言定义在/usr/src/linux/arch/i386/kernel/entry.S中; 3.中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法, 并根据系统调用向量,使处理机跳转到保存在 sys_call_table 表中的相应系统服务例程的入口; 从系统服务例程返回后恢复处理机状态退回用户程序; 而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中;sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中; 同时在 /usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口; 4.由此可见 , linux 的系统调用也象 dos 系统的 int 21h 中断服务, 它把0x80 中断作为总的入口, 然后转到保存在 sys_call_table 表中的各种中断服务例程的入口地址 , 形成各种不同的中断服务; 由以上源代码分析可知, 要增加一个系统调用就必须在 sys_call_table 表中增加一项 , 并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系统服务例程是必不可少的。 由此可知在此版linux内核源程序中,与系统调用相关的源程序文件就包括以下这些: 1.arch/i386/boot/bootsect.S 2.arch/i386/Kernel/setup.S 3.arch/i386/boot/compressed/head.S 4.arch/i386/kernel/head.S 5.init/main.c 6.arch/i386/kernel/traps.c 7.arch/i386/kernel/entry.S 8.arch/i386/kernel/irq.h 9.include/asm-386/unistd.h 当然,这只是涉及到的几个主要文件。而事实上,增加系统调用真正要修改文件只有include/asm-386/unistd.h和arch/i386/kernel/entry.S两个; (三)对内核源码的修改: 1.在kernel/sys.c中增加系统服务例程如下: asmlinkage int sys_addtotal(int numdata) { int i=0,enddata=0; while(i<=numdata) enddata+=i++; return enddata; } 该函数有一个 int 型入口参数 numdata , 并返回从 0 到 numdata 的累加值; 当然也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中作必要的说明; 2.把 asmlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中: arch/i386/kernel/entry.S 中的最后几行源代码修改前为: ... ... .long SYMBOL_NAME(sys_sendfile) .long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ .long SYMBOL_NAME(sys_vfork) /* 190 */ .rept NR_syscalls-190 .long SYMBOL_NAME(sys_ni_syscall) .endr 修改后为: ... ... .long SYMBOL_NAME(sys_sendfile) .long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ .long SYMBOL_NAME(sys_vfork) /* 190 */ /* add by I */ .long SYMBOL_NAME(sys_addtotal) .rept NR_syscalls-191 .long SYMBOL_NAME(sys_ni_syscall) .endr 3. 把增加的 sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用: 增加后的部分 /usr/src/linux/include/asm-386/unistd.h 文件如下: ... ... #define __NR_sendfile 187 #define __NR_getpmsg 188 #define __NR_putpmsg 189 #define __NR_vfork 190 /* add by I */ #define __NR_addtotal 191 4.测试程序(test.c)如下: #include #include _syscall1(int,addtotal,int, num) main() { int i,j; do printf("Please input a number "); while(scanf("%d",&i)==EOF); if((j=addtotal(i))==-1) printf("Error occurred in syscall-addtotal(); "); printf("Total from 0 to %d is %d ",i,j); } 对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(*注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才能可能被编译通过),运行情况如下: $gcc -o test test.c $./test Please input a number 36 Total from 0 to 36 is 666 可见,修改成功; 而且,对相关源码的进一步分析可知,在此版本的内核中,从/usr/src/linux/arch/i386/kernel/entry.S 文件中对 sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数: asmlinkage int sys_ni_syscall(void) { return -ENOSYS; } 例如第188项和第189项就是如此: ... ... .long SYMBOL_NAME(sys_sendfile) .long SYMBOL_NAME(sys_ni_syscall) /* streams1 */ .long SYMBOL_NAME(sys_ni_syscall) /* streams2 */ .long SYMBOL_NAME(sys_vfork) /* 190 */ ... ... 而这两项在文件 /usr/src/linux/include/asm-386/unistd.h 中却申明如下: ... ... #define __NR_sendfile 187 #define __NR_getpmsg 188 /* some people actually want streams */ #define __NR_putpmsg 189 /* some people actually want streams */ #define __NR_vfork 190 由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括 getpmsg, putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用;但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的; 所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。 结语:当然对于庞大复杂的 linux 内核而言,一篇文章远远不够,而且与系统调用相关的代码也只是内核中极其微小的一部分;但重要的是方法、掌握好的分析方法;所以上的分析只是起个引导的作用,而正真的分析还有待于读者自己的努力。

鹤岗市惠民医院
渑池县人民医院预约挂号
开封好的癫痫病医院
江西哪有治疗癫痫病的医院
曲靖治疗不孕不育方法
猜你会喜欢的
猜你会喜欢的